
Bandlimited Image Restoration by 

Mean-Square Estimation 

Charles L. Rino 

Department of Applied E le  c t r  ophys i c s  
University of California, San Diego 

La Jolla, California, 92037 

A l inear  mean-square es t imator  optimum fo r  data available only on 

a finite interval  is derived for  the restoration of images degraded by a sys t em 

with a bandlimited spread  function. The analysis is ca r r i ed  out in one 

dimension using a prolate spheroidal wavefunction expansion of the image 

process .  

function, the expansion represents  the image process  with ze ro  mean square 

e r r o r  on the ent i re  interval,  and the estimate of the geometrical  image 

If the noise is bandlimited t o  the same bandwidth as the spread 

achieves the same mean-square e r r o r  as the optimum est imate  for data on 

the infinite interval. The rate  at which the est imate  converges is discussed 

and an example presented. 
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A solution to  the image restoration problem using l inear  mean- 

1 
p a r e  estimation has been presented by Hels t rom, who demonstrated that 

data are available over an infinite interval,  Four i e r  methods could be 

sed to  obtain the res tor ing  filter. 

quare method to  obtain a restor ing f i l t e r  optimum for  data f r o m  a sys tem 

ith a stochastic spread  function. His method uses  data only over a finite 

sgion, but he does not assume that the sys tem spread  function is band- 

mited. 

roblem for  sys t ems  with bandlimited spread functions. 

Slepian has used the l inear  mean- 

2 

Other authors have recently presented solutions t o  the restoration 

3,4,5 

In this paper a restor ing f i l ter  is derived that is optimum for  data 

vailable only over a finite interval.  The analysis is performed in one 

imension for simplicity; this imposes no fundamental limitation on the 

:chnique. 

andwidth as the spread  function, the optimum f i l te r  for  data on the finite 

i terval  achieves the same  minimum mean-square e r r o r  as the optimum 

Iter fo r  data on the infinite interval. 

In the special  case  where the noise is  bandlimited t o  the same 

The analysis makes use of the fac t  that a bandlimited stationary 

tochastic process  known only over  a finite interval can be estimated with 

e r o  mean-square e r r o r  at any point outside the interval.  

y expanding the process  in a series of prolate spheriodal wave functions 

PSWF). 

This can be done 

A simple proof is given in the Appendix. 
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1. The Formulation of the Problem 

The optical sys tem will be modeled mathematically by the convolu- 

onal integral  equation 

CO 

J(x) = S(x-x') J (x ' )dx '  t N(x) .  (1.1) 
0 

-CO 

(x), the illuminance of the geometr ical  image, will be taken t o  be a zero-  
3 

lean stationary 

Le point spread  

stochastic process  with spec t ra l  density cp ( w )  . S(x) is 

function of the system. The Four i e r  t r ans fo rm s (w)  of 

0 

[x) is bandlimited to  the spatial  frequency ( w  ) interval  (-R / 2 ,  s2 / 2  ). The 

ystem noise N (x) is a l so  a zero-mean stationary stochastic process  in this 

iodel. It has spec t ra l  density cp ( w ) ,  and for  simplicity it is  assumed t o  

e uncorrelated with the geometr ical  image. 

e l s t rom.  

N 

This model is discussed by 

1 

We assume that an experimenter  has observed the image-plane 

.luminance J(x) over the finite interval  (-L/2, L b ) .  His task is to  use 

lese data  t o  f o r m  an est imate  of the geometrical  image J ( x ) at some 

oint f . He does s o  by performing a l inear  operation on the available- 

0 

1 

ata that minimizes the mean-square e r r o r .  Hence, he must  find a weighting 

inction M ( 5 ,  x) such  that 

ninimizes 
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3ere E 5 denotes mathematical  expectation. 

At this point we could proceed by formal  methods t o  obtain an 

ntegral  equation fo r  M( 5 ,  x). There is, however, an alternative procedure 

hat makes use of the optimum filter fo r  data on the infinite interval derived 

)y Hels t rom , 

If the P S W F ' s .  

1 
First it will be necessary  to  establish'  some propert ies  

There are taken directly f r o m  Slepian and Pollak. 6 

7 The P S W F ' s  are solutions of the integral  equation 

1 
2 s in  - -R (x - x') 

Y ( c , x l )  dx' = hn(c)  Yn(c,x) (1.4) n 
s L'2 
-L/2 'rr (x-x') 

vhere c = R  L / 4  . W e  will make use of the following two properties of the 

P R O P E R T Y  I. The P S W F ' s  Yn (c ,x)  f o r m  a complete orthonormal 

,asis for  the class of bandlimited functions. 

P R O P E R T Y  11. The P S W F ' s  Y (c,x) are orthogonal over the n 

n t e rva l  ( -L/2,  L /2 )  with 

I'hey form a complete orthogonal basis for the class of functions square 

integrable on the x-interval (,-L/2, L/2). 
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8 
he following equation will a lso be used, 

2. The Solution for Noise Bandlimited to  ( -  R / 2 ,  R / 2 )  

If the noise N ( x )  is  bandlimited to  the interval  (-a /2, R /2) ,  J(x ) is 

r o m  Eq. (1. I)  a bandlimited process .  

he finite interval  (-L/2, L/2), it can be estimated with ze ro  mean-square 

x r o r  at any point by its P S W F  expansion. 

Jence 

Now if  J(x) is available only over 

This is proved in the appendix. 

m - 
J (x) = 7 Jn yn ( c , x )  , 

L 

n = O  

vhe re 
L / 2  

-L/2 J n = 1 J(x') Y n (c ,x ' )  d x ' / h n ( c )  , (2.2) 

:epresents J(x) with ze ro  mean-square e r r o r  for  all x. 

inear  mean-square estimation ?(x) is equivalent t o  J(x). 

' ilter for  data on the infinite interval  can be applied t o  (2. 1). 

F o r  the purpose of 

Hence the restor ing 

W e  have 

a, m m 
L 

j o ( s ) =  M m ( s - x ' ) J ( x * ) d x l =  1 J, Mm ( 5  - x') Y, ( c , x '  )dx' 
,m 

( 2 . 3 )  n = o  
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:t 

r using Eq. (1. 5) and the convolution relation f o r  Four ie r  transforms, 

1. (2.3) can be simplified to 

The minimum mean square e r r o r  achieved by this estimate is 

his can be verified by substituting Eq. (2 .6 )  into Ey.  (1. 3). Note that 

i the analysis it was not necessary to assume that 5 (x) itself was band- 

mited. 

0 

Also, Eq. (2.8)  is (as i t  mus t  be from the analysis) the minimum 

lean-square e r r o r  achieved by M (x) operating on J(x) .  10 
0) 
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The fact  that e is  independent of 5 suggests that Eq. ( 2 . 6 )  could 

e used to estimate the illuminance of the geometrical image in  the entire 

lane when image-plane data a re  available only over the finite interval. 

'he practical  difficulties in  actually carrying this out a r e ,  however, 

Drmidable. They will be discussed in  section 4. 

3 .  The General Solution and its Mean Square E r r o r  

When the noise term in Eq. (1. 1 )  is not bandlimited to ( - Q / 2 ,  !2/2), 

he se r i e s  of Eq. (2. 1 )  no longer represents  J(x) outside the interval 

-L/2, L/2). It i s ,  however, only the noise t e r m  in Eq. (1. 1) that is  not 

epresented outside the interval ( -L /2 ,  L / 2 ) .  One might suspect f rom 

his that Eq. (2. 6) is still the optimum estimate.  This is  in  fact correct .  

t can be established by showing that Eq. (2 .6 )  does indeed sti l l  minimize 

:q. (1. 3). Now, unfortunately, the mean-square e r r o r  is no longer inde- 

,endent of 5. It contains a x-dependent t e r m  that resul ts  f rom the imper -  

ect representation of N(x)  outside ( -L/2 ,  L /2) .  

The mean square e r r o r  can be written in  the following form,  which 

Lisplays the contribution of the various terms. The function 

s used for notational convenience. 
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( 3 . 1 )  

ahere 

igain this resul t  can be derived by substituting Eq. (2 .6)  into Eq. ( 1 .  3 )  

rrith due regard for the different l imits  involved. The f i rs t  t e r m  in Eq. ( 3 .  1) 

s the minimum mean-square e r r o r  achieved when both the geometrical  

mage and the noise a r e  bandlimited to ( - Q / 2 ,  S2/2). 

. e rms  represent  respectively the contributions of the object process 

spectrum and the noise spectrum outside the bandwidth of the spread 

:unction. F r o m  Eq. ( 3 .  2) the third t e r m  i s  f-dependent. 

The second and third 
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4. Prac t ica l  Aspects of the Solution 

For  applications we need to know the rate  at which Eq. (2.6) con- 

‘erges ,  since only a finite number of terms can be evaluated. Unfortunately 

his rate is  strongly dependent on 5 even though the %-dependence of the 

nean square e r r o r  Eq. ( 3 .  1) might be small. This can be seen as follows. 

A comparison of Eq. (1. 2) and Eq. (2.6) leads to the conclusion 

hat 

f M ( 5 , x )  is represented with negligible e r r o r  by N t e r m s  in  the series (4. l ) ,  

nus t  achieve a mean-square e r r o r  close to the minimum possible e r r o r  

given by Eq. ( 3 .  1). Hence consider 

9 
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2rrL 

n=N+1 
(4. 3 )  

( 5 )  is the mean-square e r r o r  (not to be confused with the statist ical  
J 

ean square e r r o r )  that resul ts  when only N t e r m s  are used in  Eq. (4. 1). 

This i s  determined by W e  now want to know when 6 (5) is small. 
N 

e behavior of M (I). 

nction of w. 

*oportional to 

Now for most  applications q(w) is  a slowly varying n 

F rom Ey. (2. 7 ) ,  then, the gross  behavior of IM (5 )1  is n 

I 

u t  f rom Eq. (1. 5) this i s  proportional to h’(c) I Y  ( c ,  w) I. In Fig. 1 
n n 

(c ,x)  i s  plotted for c = 8 for n = 0 ,  5, and 8. The behavior of Y ( c , x )  

easi ly  understood when we recal l  that h (c)  represents  the fraction of 

1 n 

n 

.e total  energy in the n-th PSWF that is  in  the interval ( -L/2,  L/2). 

11 
where n = C Z C / r r l ,  

6 
.epian and Pollak have shown that for n < n cr i t ’  c r i t  

(c)  1, and for n > n h (c) 0. This behavior i s  c lear ly  displayed 
1 crit’ n 

1 Fig. 1. F r o m  this we conclude that for N > n SN(5)  will be small crit’ 
* 

lr 15 I < L/2. J ( 5 )  will achieve a minimum mean-square e r r o r  close 
ON 

I the theoretical value given by Eq. ( 3 .  1) for the same N and range of 5. 
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)r 151 > L/2 t e rms  of increasing order  will be necessary.  

5. An Example 

To tes t  the solution 1024 data points in  the interval (-1, 1) were 

Imputed by f i r s t  convolving the geometrical  image function 

.th a spread function for  a slit-diffracted image. The Fourier t ransform 

the spread function is 

( 5 . 2 )  

dependent, zero-mean gaussian random variates ,  N and N were then 

lded according to the formula 

k k'  

J = [(Jo,* Sk t Nk) 2 t Nk,  2 ,* 
k (5. 3) 

'he as te r i sk  means convolution. ) 

;ing the Cooley-Tukey Fourier  t ransform algorithm on a CDC 3600 

gital computer. 

mdom number sequence by standard methods. 

olate our initial assumptions of stationarity and additive noise. 

L t a  a r e ,  however, non-negative and serve to represent  a simple geometrical  

The convolution was car r ied  out by 

The normal  var ia tes  were  computed f rom a pseudo- 

Data so constructed 

The 
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rage. 

The coefficients J were calculated using Simpson's  rule for n = 0 
n 

The PSWF' s were computed by using a Legendre 

12  

rough 8 with c = 8. 

ilynomial expansion with tabulated coefficients f rom Stratton e t  al. 

ie PSWF' s were normalized to correspond to Slepian and Pollak' s def- 

itions. 

-- 

6 13 
The eigenvalues A (c)  a r e  tabulated. n 

To evaluate the weights M (T), cp (w) and cp (u)) must  be specified. In n 0 N 

e absence of any pr ior  information they 

e interval ( - R / 2 ,  02/2). 

can be taken to be constant on 

14 
With these assumptions, by Eq. (2. 5),  

Now 
15 

h e r e  B is a constant that depends on the signal-to-noise ratio. 

-n 
om Eq. (2.6) Mn(5) i s  just  i / A  (c)  times n 

' q ( w ) Y  ( c ,  w). n 

With data on the interval (-1, 1) and c = 

the inverse Fourier  t ransform 

QL/4 = 8 ,  Q = 16. By 

sing these parameters  the weights M ( 5 )  were calculated for n = 0 

lrough 8 using the Cooley-Tukey algorithm. 

n 

The series (4. 2) was then 

raluated with 9 terms and the results plotted on a Calcomp automatic 

.otter. 

L Fig. 2. 

An example with ff = 0.4,  M = 1. 0 and B = 0.5 is reproduced 
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6. Discussion 

The example demonstrates that the estimate given by Eq. (4. 2) works 

The reason for this is c lear  i f  we observe el l  for a deterministic function. 

tat with B equal to zero  in  Eq. (5.4), Eq. (2. 5) resul ts  f rom the analytic 

mtinuation of the function J(x) to the infinite interval followed by the 

?convolution of Eq. (1. 1) with N(x) = 0. 

3 J (x) i s  effectively bandlimited to ( - ! 2 / 2 ,  sd/2),  as was the case in the 

cample. 

This can be car r ied  out a s  long 

0 

I f ,  on the other hand, the Fourier  t ransform of J (x) is much 
0 

roader than 61, J (x) will normally be nearly ze ro  outside (-L/2,  L/2). 

' data  were  available on the infinite interval,  we would have the conditions 

)r attempting super-resolution. W e  know, however, that super-resolution 

3 f rustrated by the slightest amount of noise. 3 y  4 y  

y Eq. (4. 2) the resolution is l imited to that allowed by the bandwidth of 

le spread function. 

iemselves a re  bandlimited to ( - Q / Z ,  C2/2)] 

iere is nothing new. 

0 

In  the estimate given 

[Recall section 4 and the fact  that the P S W F '  s 

Hence for super-resolution 

The conclusion seems to be that although super-resolution is not 

ossible when noise is present,  extension of an image a small distance 

utside a finite interval is possible. 
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Appendix 

The Spheroidal Wavefunction Expansion of 

B andlimi te d Stationary Stochastic P r oc e s s e s 

A stationary stochastic process  X(x) i s  bandlimited i f  i t s  spectral  

nsity i s  non-zero only over a finite interval. 

the process  be K(x). Since 

Let  the covariance function 

e r e  cp(w) is the spectral  density of the process ,  K(x) i s  a bandlimited 

Iction. Because of properties I and I1 of the P S W F '  s (Sec. 1 .  ), the 

16 
W F  expansion 

Le r e  

K(x' - X I ' )  \y (c,x") dx' ' /h (c) 
n n P (XI) = n 

-L/2 

nverges in  the mean of order  two for --03 < x < -03 with x' fixed. For a 

a1 process  K(x-XI) = K(x' -x). Hence we also have convergence in the 

i 



lean of order  two for -m < x' < m with x fixed. 

Now f rom Eq. (1.4) the PSWF' s a r e  eigenfunctions of the Hermitian 

i tegral  operator 

J-L/ 2 

loreover,  the kernel of Eq. (A3) is square integrable over the unbounded 

quare -Q) < x , x l  < 05, and there exists a positive dominating constant M 

uch that 

OD 

or -a < x < w. In fact we have s t r i c t  equality in (A4) with M = 6a/2n. We 

urther observe that any function z(x) bandlimited to ( -$ Sa, 8 0) can be written 

sin Q ~ ( x - x '  ) 
rr(x-x' ) y(x' )dxl z(x) = 

J-L /  2 

Jhere y is a function square integrable over (-L/2,  L/2).  The represen-  

ation in Eq. (A5) and the Hermitian property of the operator L a re  suf- 

icient to establish the pointwise convergence of the se r i e s  in  Eq. (Al)  for 

.a C x < OD and x1 fixed. 

:nsures that the convergence is unifcrm \ for - m < x < 03 and x1 fixed. 

The addi t id id  property, Eq. (A4), of the kernel 7 
17 
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gain, f rom the symmetry  of K(x-x' ) the convergence is pointwise and 

i form in x1 as  well as  x. 

We can now prove the following theorem. 

IEOREM: The P S W F  expansion of the process  X(x) 

03 
N 

~ ( x )  = 1 a Y ( c , x )  
n n  

n= 0 

le r e  

inverges in  the mean fo r  all x ,  i. e. 

n= 0 

roof: Let  

N 

n= 0 
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ow 

nd 

iut from Eq. (A7) and Eq. (A2) 

L/ 2 

E [a X ( x l ) ]  = ~n 
K(x' -x")Yn(c, X")dx"/h n ( c )  

-L/2 

Tsing the pointwise convergence of the se r i e s  in Eq. (Al) 
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o evaluate the last t e r m  in  Eq. (A8) consider 

N N  

E, [%N(x)zN(x')] = 1 1 E N [ a  n m  a ] Y  n (c ,x)Y m ( c , x t )  (A12) 
m=O n=O 

sing Eq.. (A7) and Eq. (A10) 

L/2  

[ a  X ( X ~ ~ ) ] Y  (c,x")dx1I/h (c) 
N n m  n m m 

ow 

m=O n=O 

* L/2  

,B (XI!)* (C,X")dx'l/A (c) k,; m m 

'he interchange of summation and integration i s  justified by the uniform 

onvergence of the se r i e s  in Eq. (Al) .  By using Eq. (A2) this can be 

i r ther  simplified to 

V 



(c ,x“)dx”/h  (c) Y (c ,x)  

m=O m m I -  
.nally using the pointwise convergence of the ser,?s in  Eq. (A ) 

3w substituting Eq. (A14), Eq. (All), and Eq. (A9) into Eq. (A8) 

aim 2 
N+ 03 E [ I X ( X ) - ? ~ ( X ) ~  ] = 0 V X G ( - ~ ~ ,  a) 

Q. E. D. 

Dte that f rom Eq. (A13) the coefficients a a re  in general correlated.  n 
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Figure Captions 

g. 1. Prolate  spheroidal wave functions for  c = 8, n = 0, 5, 8. 

g. 2. Geometrical  image, computed data, and geometrical  image 

estimate with = 0.4 ,  M = 1. 0 ,  and B = 0. 5.  
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